Exemplar Problem

Trigonometry Functions

Example 16: If $\sin \theta$ and $\cos \theta$ are the roots of the equation $ax^2 - bx + c = 0$, then a, b and c satisfy the relation.

a)
$$a^2 + b^2 + 2ac = 0$$

b)
$$a^2 - b^2 + 2ac = 0$$

c)
$$a^2 + c^2 + 2ab = 0$$

d)

$$a^2 - b^2 - 2ac = 0$$

Ans: The correct answer is option (b) $a^2 - b^2 + 2ac = 0$

Given that, $\sin \theta$ and $\cos \theta$ are the roots of the equation $ax^2 - bx + c = 0$.

We know that if the roots of the quadratic equation $ax^2 + bx + c = 0$ are α and β . Then we have, $\alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$. Therefore, we get

$$\Rightarrow \sin \theta + \cos \theta = \frac{b}{a} \dots (i)$$
 and $\sin \theta \cos \theta = \frac{c}{a} \dots (ii)$

On squaring both the sides in equation (i), we get

$$\Rightarrow \sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta = \frac{b^2}{a^2}$$

We have, $\sin\theta\cos\theta = \frac{c}{a}$ and we know that $\sin^2\theta + \cos^2\theta = 1$. Therefore, we get

$$\Rightarrow 1 + \frac{2c}{a} = \frac{b^2}{a^2}$$

$$\Rightarrow \frac{a+2c}{a} = \frac{b^2}{a^2}$$

$$\Rightarrow \frac{a+2c}{1} = \frac{b^2}{a}$$

On cross multiplication, we get

$$\Rightarrow a^2 + 2ac = b^2$$

$$\Rightarrow a^2 - b^2 + 2ac = 0$$